Skeletal Characterisation of High Nuclearity Osmium Carbonyl Clusters by Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy

Stephen L. Cook,^a John Evans,^a G. Neville Greaves,^b Brian F. G. Johnson,^c Jack Lewis,^c Paul R. Raithby,^c Peter B. Wells,^d and Peter Worthington^d

^a*Department of Chemistry, The University, Southampton SO9 5NH, U.K.*

^b*S. E. R. C. Daresbury Laboratory, Daresbury, Warrington WA4 4AD, U. K.*

^c*University Chemical Laboratory, Lensfield Road, Cambridge CB2 I EW, U.K.*

^d*Department of Chemistry, The University, Hull HU6 7RX, U.K.*

Non-bonded osmium-osmium distances have been identified from the EXAFS of the *0s* L(III) edge spectra of $Os_6(CO)_{18}$, $[N(PPh_3)_2]_2[Os_6(CO)_{18}]$, and $[N(PPh_3)_2]_2[Os_{10}C(CO)_{24}]$ and can be used to characterise the cluster skeleton.

Extended X-ray absorption fine structure **(EXAFS)** studies have been widely used to probe local geometries at metal centres,' but attempts to establish metal skeletons in discrete cluster compounds have been limited.² Sole observation of a neighbouring metal within a bonding distance is insufficient for a skeletal identification which requires the location of any more remote separations. We report that such non-bonded distances can be observed in cluster complexes of osmium.

Osmium $L(III)$ edge X-ray absorption spectra were recorded and $[N(PPh_3)_2]_2[Os_{10}C(CO)_{24}]$ (4)⁶ (complexes of known structure) on the Synchrotron Radiation Source at the Daresbury Laboratory.[†] Using routines in the SRS Program Library,8 the background-subtracted **EXAFS** portions of the spectra were analysed, without any further manipulations on the experimental data, using plane and curved wave methods.⁹ Procedures based on the program EXAFS¹⁰ were employed, with *ab initio* atomic phase shifts and back scattering factors taken from the EXAFS database.' The curved wave method yielded good fits of the experimental data over an energy range of *cn.* 40 to *ca.* 840 eV above the absorption edge. The for $\mathrm{Os}_3(\mathrm{CO})_{12}$ (1),³ $\mathrm{Os}_6(\mathrm{CO})_{18}$ (2),⁴ $\mathrm{[N(PPh_3)_2]_2[Os_6(\mathrm{CO})_{18}]}$ (3),⁵

Figure 1. Experimental (--) and theoretical (---) EXAFS of the Os L(III) edge absorption spectrum of $[N(PPh_3)_2]_2[Os_{10}C(CO)_{24}]$ **(4).**

experimental and theoretical scattering curves for **(4)** are shown in Figure 1; the fits for the other three samples were closer than this one. Neighbouring shell radii used to provide these fits are given in Table 1.Osmium-carbon distances were close to the averaged X-ray diffraction values. The standard deviation on the diffraction-derived bond length in the $[Os_{6}$ - $(CO)_{18}$ ²⁻ anion is 0.05 Å, and this may partly account for the discrepancy for complex **(3).** In the analysis of the anion in (4), $[Os_{10}C(CO)_{24}]^{2-}$, the carbido carbon was consolidated

The data will be deposited with the EXAFS data bank at the Daresbury Laboratory, Daresbury, Warrington WA4 4AD, **U.K.7**

Table 1. EXAFS-derived distances for the first three shells (mean X -ray diffraction values in parentheses).

	Distances/A				Compound	
	Normalised Compound squared residuals \rightarrow	$Os-C$	$Os-Os$	$Os = -Q$	$\bf(2)$ (3)	$4.58(4.57)$, 4.12(4.05)
$\bf(1)$	0.0099	1.94(1.93)	2.79(2.88)	2.93(3.07)	$\bf(4)$	4.05(4.01),
$\bf(2)$ (3)	0.0310 0.0209	1.91(1.89) 1.90(1.83)	2.78(2.78) 2,82(2,86)	2.82(3.03) 2.87(2.93)		
(4)	0.0344	1.94(1.90)	2.81(2.84)	2.89(3.0)		

Figure 2. Structure of the $[Os_{10}C(CO)_{24}]^{2}$ anion. The three nonbonded metal distances are indicated by shading.

into a mean 0s-C shell; the weighted mean of the carbido and carbonyl distances derived from X-ray diffraction is 1.93 **A,** very close to the EXAFS value. Agreement is generally good for osmium-osmium bonding distances, with $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ affording the largest discrepancy. However, the non-bonded osmium-oxygen separations were consistently underestimated, perhaps owing to multiple scattering effects.

The value of EXAFS in cluster chemistry, however, depends upon the ability to locate non-bonded metal-metal distances. In the anion $[Os_{10}C(CO)_{24}]^{2-}$, there are three such separations with $r_{Os---Os}/r_{Os-Os}$ ratios of 1.414, 1.732, and 2.000 for an idealised geometry (Figure 2). The averaged X -ray diffraction valuesgive similar ratios. The Fourier transform (incorporating the phase and backscattering factor of the first-carbon-shell) of the experimental and theoretical scattering curves of **(4)** are shown in Figure 3. Five peaks are evident, due at increasing apparent shell radius, to the 0s-C distance *(ca.* 1.96 **A),** composite Os-Os and Os $-$ - $-$ 0 separations *(ca.* 3.01 Å) and three 0s - - - 0s distances *(cn.* 4.34, 5.08, and 5.98 **A).** The distances used to give the theoretical scattering curve (Figure 1) and its Fourier transform (Figure 3) are given in Table 2.

Table 2. Estimation of non-bonded metal-metal distances (diffrac-

Figure 3. Fourier transform of experimental (--) and theoretical (- - -) scattering curves of **(4)** shown in Figure **1.**

Observed $r_{Os---Os}/r_{Os-Os}$ ratios of 1.44, 1.73, and 2.05 were obtained, and these values are close to the idealised skeleton ones. Similar analyses have been carried out for the octahedral cluster $[Os₆(CO)₁₈]²⁻ (3)$ and the capped trigonal bipyramidal $\text{Os}_6(CO)_{18}$ (2). For complex (3), the single non-bonded metalmetal distance was evident in the Fourier transform. However in complex **(2),** only the shorter of the two non-bonded separations, *viz.* across the trigonal bipyramids, was clearly observed. The separation between the two atoms capping the central metal tetrahedron has a very low average occupancy (0.33) (the average shell occupancy of bonded osmium atoms is 4 in this complex) so it would be difficult to locate. However its position was estimated by minimising the squared residuals and using a narrow Gaussian window for the Fourier transform.

The distances so determined are given in Table **2.** Agreement between the mean X -ray diffraction and EXAFS distances is within 0.1 Å for all but the outermost shell in $\text{Os}_6(\text{CO})_{18}$ discussed above. Even if the evidence for the outermost metalmetal separation in **(2)** is discarded, then the skeletons of **(2)** and (3) can be distinguished by the $r_{Os---Os}/r_{Os-Os}$ ratio for the first non-bonded shell. These ratios are 1.63 and 1.414 for the idealised geometries of **(2)** and **(3)** respectively; the observed ratios are I .65 and 1.46.

These results demonstrate that, for highly backscattering metals at least, **EXAFS** can provide strong evidence about the skeletal geometry of a high nuclearity cluster. This information is easiest to obtain on species of high symmetry with a restricted number of non-bonded shells and relatively high shell occupancies. We are extending this survey to lighter elements and are applying the techniques to less well characterised solution and supported species.

Compound Distances */A* (2) $4.58(4.57), 5.06(4.78)$
(3) $4.12(4.05)$

tion values in parentheses).

We thank the **S.E.R.C.** for support and a studentship for *S.* **L.** C. We are particularly grateful for assistance given by Mr. **I.** Ross, Dr. C. **D.** Garner, and Dr. G. P. **Diakun.**

Received, 20th April 1983; Corn. 488

References

- 1 **'EXAFS** Spectroscopy,' eds. B. K. Teo and D. C. Joy, Plenum, 1981.
- ²**T.** E. Wolf?', J. M. Beng, K. 0. Hodgson, R. B. Frankel, and R. H. Holm, *J. Am. Chem.* SOC., 1979, **101,** 4140; R. Psaro, R. Ugo, G. M. Zanderighi, B. Besson, **A.** K. Smith, and J. **M.** Basset, *J. Orcyanornet. Chem.,* 1981, **213,** 215; F. W. Lytle, G. H. Via and J. H. Sinfelt in 'Synchrotron Radiation Research,' eds. H. Winich and **S.** Doniach, Plenum, 1980.
- 3 M. R. Churchill and B. **G.** DeBoer, *Inorg. Chem.,* 1977, **16,** 878.
- 4 R. Mason, K. M. Thomas, andD. **M.** P. Mingos, *J. Am. Chem. SOC.,* 1973, *95,* 3802.
- 5 M. McPartlin, C. R. Eady, B. F. G. Johnson, and J. Lewis, *J. Chem. SOC., Chem. Commun.,* 1976, 883.
- **6** P. F. Jackson, B. F. G. Johnson, J. Lewis, **M.** McPartlin, and W. **J.** H. Nelson, *J. Chem. SOC., Chem. Commun.,* 1980,224.
- 7 E. Pantos and **G.** D. Firth, Daresbury Laboratory Technical Memorandum, DL/CSE/TM21, 1982.
- 8 **E.** Pantos, Daresbury Laboratory Preprint, DL/SCI/P346E, 1982.
- 9 P. **A.** Lee and J. **B.** Pendry, *Phys. Rev.,* 1975, **11,** 2795.
- 10 **S.** J. Gurman, Daresbury Laboratory Technical Memorandum, DL/SCT/TM21T, 1980; C. D. Garner and **I.** Ross, unpublished results.